Resistance to vemurafenib resulting from a novel mutation in the BRAFV600E kinase domain.

نویسندگان

  • Timothy R Wagenaar
  • Leyuan Ma
  • Benjamin Roscoe
  • Sung Mi Park
  • Daniel N Bolon
  • Michael R Green
چکیده

Resistance to the BRAF inhibitor vemurafenib poses a significant problem for the treatment of BRAFV600E-positive melanomas. It is therefore critical to prospectively identify all vemurafenib resistance mechanisms prior to their emergence in the clinic. The vemurafenib resistance mechanisms described to date do not result from secondary mutations within BRAFV600E. To search for possible mutations within BRAFV600E that can confer drug resistance, we developed a systematic experimental approach involving targeted saturation mutagenesis, selection of drug-resistant variants, and deep sequencing. We identified a single nucleotide substitution (T1514A, encoding L505H) that greatly increased drug resistance in cultured cells and mouse xenografts. The kinase activity of BRAFV600E/L505H was higher than that of BRAFV600E, resulting in cross-resistance to a MEK inhibitor. However, BRAFV600E/L505H was less resistant to several other BRAF inhibitors whose binding sites were further from L505 than that of PLX4720. Our results identify a novel vemurafenib-resistant mutant and provide insights into the treatment for melanomas bearing this mutation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

BRAF Fusion as a Novel Mechanism of Acquired Resistance to Vemurafenib in BRAFV600E Mutant Melanoma.

Purpose: Many patients with BRAFV600E mutant melanoma treated with BRAF inhibitors experience a rapid response, but ultimately develop resistance. Insight into the mechanism of resistance is critical for development of more effective treatment strategies.Experimental Design: Comprehensive genomic profiling of serial biopsies was performed in a patient with a BRAFV600E mutant metastatic melanoma...

متن کامل

Vemurafenib potently induces endoplasmic reticulum stress-mediated apoptosis in BRAFV600E melanoma cells.

The V600E mutation in the kinase BRAF is frequently detected in melanomas and results in constitutive activation of BRAF, which then promotes cell proliferation by the mitogen-activated protein kinase signaling pathway. Although the BRAFV600E kinase inhibitor vemurafenib has remarkable antitumor activity in patients with BRAFV600E-mutated melanoma, its effects are limited by the onset of drug r...

متن کامل

Vemurafenib enhances MHC induction in BRAFV600E homozygous melanoma cells

To optimally integrate targeted kinase inhibitors and immunotherapies in the treatment of melanoma, it will be critical to understand how BRAFV600E mutational status and BRAFV600E inhibition influence the expression of genes that govern antitumor immune responses. Because major histocompatibility complex (MHC) molecules are critical for interactions between tumor cells and lymphocytes, we inves...

متن کامل

Vemurafenib-resistance via de novo RBM genes mutations and chromosome 5 aberrations is overcome by combined therapy with palbociclib in thyroid carcinoma with BRAFV600E

Purpose Papillary thyroid carcinoma (PTC) is the most frequent endocrine tumor. BRAFV600E represents the PTC hallmark and is targeted with selective inhibitors (e.g. vemurafenib). Although there have been promising results in clinical trials using these inhibitors, most patients develop resistance and progress. Tumor clonal diversity is proposed as one mechanism underlying drug resistance. Here...

متن کامل

Combinatorial Resistance: The Best Defense is a Good Offense

In drug development, specificity and the avoidance of off-target effects are the initial holy grails, with the ultimate goal of obtaining maximal in vivo efficacy coupled with minimal toxicity. Tumors, however, can be very efficient at nullifying the benefits of what could otherwise be good drugs. Tumors achieve these effects through a variety of mechanisms, one of which is drug resistance. Acq...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Pigment cell & melanoma research

دوره 27 1  شماره 

صفحات  -

تاریخ انتشار 2014